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Abstract—A new noninvasive technique for atrial arrhyth-
mia analysis is presented which, based on time–frequency
analysis and principal decomposition, produces trends of the
atrial signal characteristics using the surface ECG. New ho-
mogeneity measures are introduced in order to continuously
measure how well the decomposed functions represent the
atrial signals. A database containing signals from 20 patients
with different atrial arrhythmias (mainly atrial fibrillation)
was analyzed. It was found that the method is very well-
suited for characterizing the signals and it is expected that
the resulting functions may be useful for separating different
arrhythmias.

I. Introduction

It is desirable to find non-invasive methods for charac-
terization and classification of atrial arrhythmias, including
tachycardia, flutter and fibrillation. Information contained
in the atrial activity must, in some suitable way, be quanti-
fied to accomplish this task. So far, the main efforts in this
field have been directed towards atrial fibrillation analysis
although the same methods in many cases can be used for
flutter and tachycardia. In the atrial fibrillation case, the
atrial activity in the ECG have conventionally been classi-
fied into “coarse/medium/fine” fibrillation, see e.g. [1], [2],
to provide a general description of structure and amplitude.
The repetition rate (or atrial cycle length) of the f–waves in
the ECG has also been investigated and serves as an index
of the degree of atrial organization [3], [4]. Estimation of
the average repetition rate can be based on spectral analy-
sis. Such an approach gives a general picture of the signal
by providing information about the average repetition rate
by means of the peak location, the variation in the rate
by the width of the peak and the average signal energy by
the peak amplitude. This method is simple but provides
valuable clinical information.

Recently, we suggested time-frequency analysis (TFA)
for a more detailed temporal characterization of variations
in the repetition rate, [5]. The potential of having a high
temporal resolution was illustrated by two situations: a few
patients were found for which the typical irregular rhythm
of atrial fibrillation was suddenly interrupted by short in-
tervals of a different, more regular rhythm. Another situa-
tion is that changes in repetition rate can be investigated
during different interventions. The strategy that was cho-
sen in order to analyze the signals on a second-to-second
basis was to use an iterative cross-Wigner-Ville distribu-
tion (XWVD). In some patients, the XWVD revealed very
large variations in repetition rate (e.g., varying from 5 to 7
Hz) whereas very small variations were observed in others.

However, the XWVD models the frequency variations as
a frequency-modulated sinusoid which has a low-pass effect

on the trends. Further, it only uses the energy in the fun-
damental frequency and is therefore not capable of tracking
the shape of the signals as described by its harmonics. An-
other limitation is that the computational complexity is
relatively high.

Atrial signals may be nonstationary but are repetitive
and thus they can during short intervals be represented by
a fundamental which reflects the repetition rate and a har-
monic pattern which reflects the shape of the fibrillatory
waveform. One way to achieve a detailed feature extrac-
tion in the time-frequency plane for this type of signals is
to decompose the time-frequency distribution into descrip-
tive functions (”principal components”): spectral profile,
frequency shift trend and amplitude scaling trend, [6].

This paper addresses the problem of characterizing dif-
ferent atrial arrhythmias using a modified TFA-based prin-
cipal component decomposition of residual ECGs in order
to extract clinically interesting features such that different
arrhythmias or different intervals during one arrhythmia
can be differentiated. The goal is to find a set of trends
that can serve as a basis for classification of atrial arrhyth-
mias.

II. Methods

We propose a TFD-based characterization of residual
ECGs. The methods consists of four parts: a preprocessing
stage which performs prefiltering and QRST cancellation in
order to produce an atrial signal. In the second stage, the
time-frequency distribution is computed and decomposed
into a set of descriptive functions. Finally, a postprocess-
ing stage is used to analyze the spectral content of the
frequency trend.

A. Preprocessing

A spatiotemporal QRST cancellation scheme was used
[7]. Since the spectral content of interest in the resulting
residual ECG signal is well below 25 Hz, the residual ECG
can be downsampled from 1 kHz to 50 Hz. This operation
considerably reduces the amount of data to be processed.
The main parts of the ventricular activity (QRS complex
and T wave) is removed in the residual ECG signal and thus
this signal contains primarily atrial activity i.e. P waves
during sinus rhythm and f-waves during atrial fibrillation.

B. Time-frequency analysis

In the present paper, we focus on atrial tachycardia,
atrial flutter and atrial fibrillation and for this purpose only
the frequency interval between 2.5-25 Hz is of interest. This
interval is chosen such that slow tachycardias down to 2.5

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 
 

0-7803-7211-5/01$10.00©2001 IEEE 

 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Time-Frequency Characterization of Atrial Arrhythmias Using
Principal Decomposition 

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Signal Processing Group Department of Electroscience Lund
University 

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original
document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



2

Hz can be represented. All these types of atrial signals have
in common that they are repetitive. During tachycardia the
cycles are often of equal length. For fibrillation, the cycle
length may vary very rapidly and the signal is referred to
as being nonstationary. However, for short intervals (typ-
ically 1-2 seconds) atrial fibrillation signals can be viewed
as approximately stationary. The result is that when an-
alyzing the spectral content of all these types of different
atrial signals on a second-to-second basis the result will be
a fundamental and a number of harmonics reflecting the
shape of the waveforms. The harmonic pattern have negli-
gible energy above 25 Hz. Another reason to use the lower
limit at 2.5 Hz is that possible small QRST residuals ap-
pear at low frequencies depending on the RR interval and
the window length. If the QRST residuals are of high am-
plitude or occur in a periodic way they may have spectral
content above 2.5 Hz.

Let the frequency vector f = [f0 . . . fNf −1 ]T denote an
increasing sequence (length Nf ) of normalized frequencies.
The corresponding DFT matrix, F, (Nf -by-Nw where Nw

is the signal window length) can then be written

F =
[

1 e−j2πf e−j2πf2 . . . e−j2πf(Nw−1)
]

(1)

where 1 is a column vector of length Nf . If the frequencies
are uniformly distributed the DFT matrix is unitary. In the
present method, the Short-Term Fourier transform (STFT)
with a logarithmic frequency scale for the frequency in-
terval 2.5-25 Hz such that a doubling in frequency for all
frequencies corresponds to the same number of frequency
bins. The motivation for this is to be able to compare the
harmonic pattern for intervals with different fundamental
frequency (or atrial cycle length). A signal window length
of Nw = 128, i.e, about 2.5 seconds, is used. The frequency
vector was defined as

f = [ 2.5 2.5 · 10
1

Nf . . . 2.5 · 10
Nf −1

Nf ] (2)

where Nf = Nw. Further, the diagonal entries in the di-
agonal matrix H (Nw-by-Nw) represent a window function
(here chosen as Hamming). The observed signal, x(n), is
represented by a data matrix, X, in which the columns are
overlapping data sequences. For a window distance L and
a total signal length of K window intervals (total signal
length is thus (K − 1) − by − L + Nw) the data matrix
(Nw-by-K) is given by

X =

[
x(0) . . . x((K − 1)L)

.

.

.
.
.
.

.

.

.
x(Nw − 1) . . . x((K − 1)L + Nw − 1)

]
(3)

where column k represents the signal in the k:th window
interval.

The STFT of the observed signal x(n) can be written as

Q = FHX (4)

where Q is Nf -by-K and the k:th column contains the
spectrum, qk , for the k:th window interval.

Q = [q0 . . . qN−1 ] (5)

C. Principal decomposition

A time-frequency distribution, Q, of a nonstationary but
cyclic signal can, using principal decomposition, be divided
into three trends: a spectral profile function, φ, a frequency-
shift function, θk, and an amplitude function, ak, using an
iteration method, which shifts the spectra for the different
window intervals such that the first principal component
of the correlation matrix based on all spectra represents
as much of the energy as possible, [6]. This is achieved
when the peaks for all spectra are at the same location.
The shift needed for each of the spectra is the frequency-
shift function, θk. The inner product between the first
principal component and each spectrum, shifted such that
the peaks match, reflects the amplitude, ak, of the signal in
that window interval. The iterative procedure is initialized
with, Q(0) = Q, i = 0 . The correlation matrix, R(i), for
the distribution , Q(i), is given by

R(i) = Q(i)Q(i)H (6)

The eigenvector corresponding to the largest eigenvalue,
φ(i), can be calculated using the iterative ”power method”.
An extended eigenvector, φ̃(i), with Θ (maximum fre-
quency shift) extra samples in both the beginning and the
end is created in order to allow selection of different parts of
the vector. These extra samples are set to the same value
as the start and end samples of φ(i) respectively. There
are now 2Θ + 1 possible sets of Nf samples that can be
selected from φ̃(i). The selection is done using a frequency
shift matrix Jθ defined as

Jθ = [0Nf ×(Θ+θ) INf ×Nf
0Nf ×(Θ−θ)] (7)

which selects Nf samples from Nf + 2Θ.
Maximization of the scalar product between each spec-

trum, q(0)
k , in Q(0) and all possible shifts of the eigenvector,

Jθφ̃
(i), with respect to θ is done using a grid search of θ

in the interval [−Θ,Θ] in order to find the frequency shift
θ̂
(i)
k

θ̂
(i)
k = arg max

θ
|(Jθφ̃

(i))Hq(0)
k | (8)

The corresponding amplitude scaling function â
(i)
k is then

the inner product

â
(i)
k = (J

θ̂
(i)
k

φ̃(i))Hq(0)
k (9)

The vector q(0)
k is prolonged with Θ extra samples in both

the beginning and the end in the same way as for the eigen-
vector above and each shifted spectrum, q(i+1)

k , in Q(i+1)

is constructed as

q(i+1)
k = J−θ̂

(i)
k

q(0)
k (10)

The purpose of this shift is to generate a TFD with a higher
energy concentration around the dominant frequency in or-
der to calculate an even more concentrated spectral profile
(principal eigenvector of the correlation matrix).
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The total energy of the amplitude scaling factors is used
to detect convergence of the procedure. When the differ-
ence in total energy between the present and previous iter-
ation is less than 10% of the total energy for the previous
iteration, the iterations are terminated. Otherwise i = i+1
and the procedure is repeated from eqn. (6).

At the final iteration, a homogeneity function, δ̂k, is cal-
culated in order to measure how well the spectral profile
represents each spectra in the time-frequency distribution

δ̂k =
(J

θ̂
(i)
k

φ̃(i))Hq(0)
k

‖ (J
θ̂
(i)
k

φ̃(i)) ‖‖ q(0)
k ‖

(11)

This measure is calculated both for the entire frequency
interval (2.5-25 Hz) representing mainly the fundamental
frequency (δ̂1,k) but also for the frequency interval 9-25 Hz
which contains the harmonics in order to measure how well
the shape matches the shape represented by the spectral
profile (δ̂2,k).

D. Postprocessing

One example of postprocessing is to investigate modu-
latory properties in the atrial signals. This can be done
by performing spectral analysis of the frequency trend, ŝk,
i.e. the frequency of the fundamental peak in the spectral
profile, φ = [φ0 . . . φNf −1 ], adjusted by the frequency shift
function

ŝk = farg maxi φi−θ̂k
(12)

The ”modulation” spectrum S of ŝk is calculated using the
FFT.

III. Results

In order to investigate the properties of different atrial
arrhythmias, the proposed method was applied in 20
recordings from patients with atrial arrhythmias. Three
patients had atrial tachycardia and 17 had chronic atrial
fibrillation. Three patients were studied during rhythm
controlled respiration (0.125 Hz) for the purpose of inves-
tigating possible modulatory effects on the fibrillation fre-
quency. Each recording was of one minute duration and
lead V1 was investigated (although V2 and V3 were also
used for QRST cancellation).

The performance of the proposed method is demon-
strated by four examples which are representative for the
entire database. Five seconds from each of the four ECG
signals in which the ventricular activity has been cancelled
are shown in Fig. 1. The corresponding decomposed time-
frequency distributions are presented in Figs. 2-5. Each of
these figures shows the logarithmic STFT in the upper left
corner. The resulting spectral profile, φ, is plotted below
the STFT; for comparison the power spectrum is also pre-
sented. In the upper right corner the three trends θ̂k, âk

and δ̂k are plotted. In the rightmost plot the two homo-
geneity functions δ̂1,k and δ̂2,k are plotted. Finally, in the
lower right corner the spectrum, S, of the frequency trend,
ŝk, is shown and is of particular interest in examples 3
and 4.
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Fig. 1. Five seconds from each of the four ECG signals in which the
ventricular activity has been cancelled.

A. Example 1

Figure 2 shows a typical case of atrial fibrillation with
a dominant fundamental frequency at around 6 Hz. The
frequency shift function reveals a relatively large frequency
variation. In this case, two harmonics are visible in the
spectral profile. From the homogeneity functions in the
rightmost plot it is noted that the spectral profile relatively
well represents each spectra in the distribution both con-
cerning the fundamental and the harmonic pattern (the
average values of δ̂1,k and δ̂2,k are 0.94 and 0.90 respec-
tively). This means that the shape of the fibrillation waves
are relatively constant independently of frequency and am-
plitude. In this example no obvious patterns can be seen in
the amplitude function and the frequency trend spectrum.
Comparing the power spectrum of the entire one-minute
signal to the spectral profile, it is evident that the funda-
mental peak of the latter spectrum is narrower and that
the harmonics can be more easily discerned.
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Fig. 2. Example 1: Decomposition of a 1 minute atrial fibrillation
time-frequency representation. Upper right: frequency shift func-
tion, amplitude function and homogeneity function (2.5-25 Hz -
solid line, 9-25 Hz - dotted line). Lower left: Spectral profile
- solid line, power spectrum - dotted line. Lower right: Power
spectrum of the frequency trend sk.

B. Example 2

The second example is shown in Fig. 3. In this case the
typical irregular rhythm of atrial fibrillation was suddenly
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interrupted by 10 seconds of a more regular rhythm. This
can be easily detected in both the constant value of the
frequency shift trend but also in the sudden increase of the
amplitude trend. Similar to example 1, two harmonics are
observed but the peaks are here more distinct. Again, a
large difference is found between the power spectrum and
the spectral profile. It is interesting to note that both ho-
mogeneity measures are slightly closer to one during the
regular rhythm. In average the homogeneity values were
δ̂1 = 0.92 and δ̂2 = 0.88 indicating that the shape given
by the spectral profile also is representative during weaker
irregular rhythm. No obvious peak is detected in the fre-
quency trend spectrum. However, it is curious to note that
the largest peak above 0.1 Hz occur at the normal respi-
ratory rate (0.31 Hz and 0.32 Hz respectively) in Figs. 2
and 3.
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Fig. 3. Example 2: Decomposition of a 1 minute atrial fibrillation
time-frequency representation with a 10 s long regular rhythm at
30 s. (See legend to Figure 1 for further explanations.)

C. Examples 3 and 4

Figure 4 shows a decomposed atrial fibrillation signal
with two harmonics in the spectral profile and with rel-
atively large frequency shifts (θk). In Fig. 5, the same
decomposition is performed for an atrial tachycardia case
(3 harmonics combined with an almost constant frequency
shift function (θk)). A number of observations can be
made: First, the homogeneity measures are as expected in
average very close to one (δ̂1 = 0.99 and δ̂2 = 0.97) for the
more regular arrhythmia in Fig. 5, but also for the atrial
fibrillation case in Fig. 4 these measures are relatively high
(δ̂1 = 0.95 and δ̂2 = 0.91). Secondly, in both cases obvi-
ous peaks are present around the respiratory frequency at
0.125 Hz in the frequency trend spectra. This peaks dis-
appeared when blocking the autonomous nervous system
with atropine. Finally, when the rhythm is stationary the
power spectrum and the spectral profile are identical.

IV. Conclusions

Analysis of signals from a database of 20 patients with
different arrhythmias (mainly atrial fibrillation) shows that
the proposed method is very well-suited for characterizing
the atrial signals as indicated by the homogeneity trends.
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Fig. 4. Example 3: Decomposition of a 1 minute atrial fibrillation
time-frequency representation during rhythm control respiration
(0.125 Hz). (See legend to Figure 1 for further explanations.)
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Fig. 5. Example 4: Decomposition of a 1 minute atrial tachycardia
time-frequency representation during rhythm control respiration
(0.125 Hz). (See legend to Figure 1 for further explanations.)

Comparing the power spectrum of the signals to the spec-
tral profiles, it is evident that the peaks of the spectral
profiles are narrower and that the peaks of the harmon-
ics, representing atrial morphology, can be much better
discerned. Further, modulatory properties in the atrial ac-
tivity can be obtained from the frequency trend.

References

[1] M. Thurmann and J. Janney, “The diagnostic importance of fib-
rillatory wave size,” Circ., vol. 25, pp. 991–994, 1966.

[2] G. Wagner, Practical Electrocardiography. Williams & Wilkins,
9 ed., 1994.

[3] M. Holm, S. Pehrsson, M. Ingemansson, L. Sörnmo, R. Johansson,
L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, and B. Ols-
son, “Non-invasive assessment of atrial refractoriness during atrial
fibrillation in man - introducing, validating and illustrating a new
ECG method,” Cardiovasc. Res., vol. 38, pp. 69–81, 1998.

[4] A. Bollmann, N. Kanuru, K. McTeague, P. Walter, D. DeLurgio,
and J. Langberg, “Frequency analysis of human atrial fibrillation
using the surface electrocardiogram and its response to ibutilide,”
Ameri. J. Cardiol., vol. 81, pp. 1439–1445, June 1998.

[5] M. Stridh, L. Sörnmo, C. J. Meurling, and S. B. Olsson, “Char-
acterization of atrial fibrillation using the surface ECG: Time-
dependent spectral properties,” IEEE Trans. Biomed. Eng.,
vol. 48, pp. 19–27, January 2001.

[6] S. H. Nawab, D. M. Beyerbach, and E. Dorken, “Principal de-
composition of time-frequency distributions,” IEEE Trans. Sig.
Proc., vol. 41, pp. 3182–3186, November 1993.

[7] M. Stridh and L. Sörnmo, “Spatiotemporal QRST cancella-
tion techniques for analysis of atrial fibrillation,” IEEE Trans.
Biomed. Eng., vol. 48, pp. 105–111, January 2001.

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


